Измеритель индуктивности и ёмкости (LC).

Радиолюбитель 2000 №11-12

Хочу предложить измеритель LC с прямым отсчётом. Данный пробник, несмотря на свою простоту, обладает большими возможностями. Он позволяет измерять:

- ёмкость конденсаторов (не выпаивая их из схемы);
- индуктивность;
- частоту сигналов (TTL-уровня);
- тангенс угла и сопротивление потерь конденсаторов;
- магнитную проницаемость сердечников;
- добротность катушек индуктивности;
- наличие короткозамкнутых витков в катушках. Схема пробника показана на рис.1.

Схема измерителя LC
рис.1. Схема измерителя LC

На элементах DD1 и DD2 собран генератор, времязадающим элементом которого является измеряемая ёмкость или индуктивность. На элементах DD3 и DD4 собран делитель частоты с максимальным коэффициентом деления 16777211. Вся шкала пробника включает 25 значений, отличающихся друг от друга в 2 раза. При работе пробника визуально определяется, частота мигания какого светодиода ближе всего к 1 Гц. Показания напротив него и являются результатом измерения. Диод VD2 защищает прибор от переполюсовки питания.

Измерение ёмкости. Перед измерением конденсатор необходимо разрядить. Переключатель S1 поставить в разомкнутое положение (измерение ёмкости). В зависимости от необходимой точности, измерение можно провести тремя способами.

Технические характеристики:
Номинальное напряжение питания, В
4,3
Ток потребления, мА, не более
45
Диапазон измеряемой ёмкости, мкФ
80*10-6...25*103
Диапазон измеряемой индуктивности, Гн
2,5*10-6...40
Диапазон измеряемой частоты, Гц
1...16*106
Амплитуда напряжения на щупах при измерении ёмкостей, В
0,35
Амплитуда напряжения на щупах при измерении индуктивностей, В
10
Минимальная добротность индуктивностей
11

Способ 1. К щупам пробника подключается измеряемый конденсатор (его можно не выпаивать из схемы) и определяется, какой светодиод мигает с частотой около 1 Гц. На шкале против него читается значение ёмкости.
Способ 2. Для более точного измерения ёмкости нужно сделать все как в способе 1, только смотреть на светодиод, который мигает с частотой, большей чем 1 Гц, подсчитать количество миганий за 10 с, и вычислить частоту миганий, разделив подсчитанное количество на 10. Показание напротив этого светодиода разделить на полученную частоту. Результат и будет значением ёмкости конденсатора.
Способ 3. Для ещё более точного определения ёмкости можно воспользоваться осциллографом или частотомером. Причём при использовании осциллографа можно оценить и качество проверяемого конденсатора (определить тангенс угла потерь). Подключив осциллограф или частотомер к щупам пробника, этими же щупами нужно коснуться проверяемого конденсатора. Если конденсатор имеет малые потери, то вид осциллограмы будет такой, как показано на рис.2 а. При больших потерях вид осциллограммы будет такой, как на рис.2 б. Определите величину периода Т и по формуле (1) подсчитайте ёмкость конденсатора:

С=T/40-5*10-9 (Ф). (1)

При ремонте радиоаппаратуры достаточно измерить ёмкость конденсатора по способу 1. Если полученное значение ёмкости меньше номинала, указанного на конденсаторе, в 2 и более число раз, такой конденсатор необходимо заменить.

измеритель,индуктивность,ёмкость,частотомер
рис.2. Осциллограммы

Измерение индуктивности. Индуктивность, так же как и ёмкость, можно измерить тремя способами.

Способ 1. Он аналогичен способу 1 для измерения ёмкостей. Только переключатель S1 нужно замкнуть.
Способ 2. Аналогичен способу 2 для измерения ёмкостей конденсаторов. Переключатель S1 поставить в положение для измерения индуктивности (замкнуть).
Способ 3. Аналогичен способу 3 для измерения ёмкостей. Индуктивность рассчитываем по формуле

L = 40*Т (Гн), (2)

а вид осциллограмм для катушек с малыми и большими потерями приведён на рис.За и 3б соответственно. Значения ёмкостей конденсаторов и индуктивностей катушек с потерями, определённые с помощью пробника, будут содержать погрешность - тем большую, чем больше эти потери.

измеритель,индуктивность,ёмкость,частотомер
рис.3. Осциллограммы

Измерение частоты сигнала. Пробник позволяет измерять частоту сигнала ТТЛ-уровня, при условии, что питание пробника гальванически развязано от питания проверяемой цепи. Переключатель S1 необходимо поставить в положение для измерения индуктивности. Одним щупом коснитесь общего провода, а другим - источника сигнала. Напротив светодиода, мигающего с частотой около 1 Гц, прочитайте показания частоты сигнала. Для более точного определения частоты можно воспользоваться способом 2.

Определение тангенса угла потерь конденсаторов. Тангенс угла потерь (tg d) точно можно определить с использованием осциллографа.

Способ 1. Для этого необходимо подключить к щупам пробника осциллограф и проверяемый конденсатор. Если осциллограмма выглядит как на рис.2б, конденсатор имеет потери, величину которых можно вычислить. Конденсатор с потерями можно заменить эквивалентной схемой - последовательно соединёнными конденсатором и сопротивлением потерь. Тогда тангенс угла потерь равен:

tg d = Rп/Xc = Rп/(2*pi*f*C), (3)

где Rп - сопротивление потерь (Ом);
Хc - реактивное сопротивление конденсатора (Ом);
f - частота, на которой работает конденсатор (Гц);
C - ёмкость конденсатора (Ф).

Для данного пробника:

Rп = Uп/0,03 (Ом). (4)

Uп - измеряется по осциллографу, согласно рис.2б. При подключении к пробнику конденсатора, период Т, с учётом сопротивления потерь Rп, равен:

T = 3,33*(12-Rп)*(C + 5*10-9) (c) (5)

Если в данную формулу подставить Rп=0, то получается формула (1).

Способ 2. Измерьте ёмкость конденсатора с помощью пробника. Если пробник показал ёмкость в 2 или более число раз меньшую, чем номинал конденсатора (обозначенный на нем), данный конденсатор имеет большое сопротивление потерь Rп, а соответственно, и большой tg d. Тогда, согласно формуле (5), можно найти сопротивление потерь. Результаты расчёта сведены в таблицу.

Nраз

2

4

8

16

32

64

Rп, Ом

6

9

10,5

11,25

11,63

11,81

В верхней строке таблицы - кратность показаний пробника (во сколько раз ёмкость конденсатора меньше ёмкости, обозначенной на корпусе конденсатора. В нижней строке - соответствующее сопротивление потерь.

Определение добротности катушек индуктивности. Определите индуктивность катушки L1. Омметром (желательно цифровым) измерьте активное сопротивление катушки R. Подсчитайте реактивное сопротивление на заданной частоте.

XL= 2*pi*f*L (Ом), (6)

где XL - реактивное сопротивление катушки (Ом);
f - рабочая частота (Гц);
L - индуктивность катушки (Гн).

Добротность катушки индуктивности рассчитывается по формуле;

Q = XL/R. (7)

На данном пробнике показания заметны при Q>11.

измеритель,индуктивность,ёмкость,частотомер
рис.4. Типы сердечников

Определение магнитной проницаемости сердечника из феррита. Рассмотрим три вида сердечников (рис.4). Рассчитаем величины, необходимые для определения магнитной проницаемости сердечников.

lМ=(D + d)*pi/2 (9)
SМ=(D - d)*h/2 (10)
lМ=2*(А+В-2*С) (11)
SМ=h*c (12)
lМ=2*(h+а+с)+3/2*а (13)
SМ = a*b (14)

Формулы (9) и (10) используются для кольца, (11) и (12) - для П-образного, а (13) и (14) - для Ш-образного сердечника. Все размеры в формулах (9)...(14) берутся в сантиметрах. Намотайте не менее 15 витков провода (внавал) на сердечник и измерьте пробником полученную индуктивность, (для Ш-образного сердечника витки нужно мотать по размеру а). Эффективная магнитная проницаемость сердечника рассчитывается по формуле

uэ=(L*lМ)/(u0*n2*SМ) (15)

где L - индуктивность катушки, намотанной на данный сердечник (Гн);
lм - длина средней магнитной силовой линии (см);
SM - площадь сечения магнитопровода (см2);
u0 - магнитная проницаемость вакуума (u0=4*pi*10-9 Гн/см);
n - количество витков.

Выявление короткозамкнутых витков. Для определения наличия короткозамкнутых витков в катушках, намотанных на кольцеобразных, П-образных и Ш-образных сердечниках, необходимо сравнить индуктивность, измеренную пробником, и расчётную:

L=u0*uэ*n2*Sм/lм , (16)

где uэ - эффективная магнитная проницаемость для ферритовых материалов (указывается на них). Если она неизвестна, её можно определить так, как описано выше. Если индуктивность, определённая пробником, меньше в 2 и более раз, чем расчётная, то в катушке имеются короткозамкнутые витки.

Детали. Формулы (1, 2, 4, 5) верны только для пробника, собранного на микросхемах 74НС00. Если генератор пробника собрать на микросхемах других серий, в том числе и отечественных, в формулах появятся поправочные коэффициенты. При выборе микросхем нужно помнить, что:

- размах напряжения на щупах пробника не должен превышать 0,3...0,4 В, чтобы не открывались р-n переходы не только кремниевых, но и германиевых транзисторов и диодов. Это позволяет проверять конденсаторы, не выпаивая их из плат;
- ИМС должны быть достаточно быстродействующими (шире диапазон измерения);
- при использовании некоторых серий необходимо подключить конденсатор С6 1000 пФ...0,01 мкФ (рис.1) для устойчивого запуска генератора. Это резко сужает диапазон измерений.

Автором были проверены микросхемы серий К155, К555, К531, К131, КР1533, 7400, 74LS00, 74НС00. Всем требованиям больше всего отвечала микросхема КР1533ЛАЗ. У неё размах напряжения на щупах был около 0,02 В. Но из-за этого она оказалась слишком чувствительной к помехам и наводкам от рук. Приходилось применять специальные меры, которые резко снижали диапазон измерений. ИМС К155ЛАЗ имела большой размах напряжения, что открывало р-n переходы даже кремниевых транзисторов и диодов. К555ЛАЗ открывала р-п переходы только германиевых транзисторов и диодов. Так что из этих серий лучше всего использовать микросхему 74НС00. Она малочувствительна к помехам и наводкам от рук, не открывает p-n переходы даже германиевых транзисторов и диодов. К тому же, имеет малое потребление энергии. Для счётчиков также лучше использовать микросхемы серии CD74HCT4040, т.к. они достаточно высокочастотны, имеют выходной ток, достаточный для хорошего свечения светодиодов, мало потребляют энергии. Напряжение питания должно быть стабилизированным. Оно выбрано 4,4 В. При выборе напряжения питания необходимо помнить, что его изменение приводит к изменению коэффициентов в формулах (1, 2, 4, 5), а следовательно, влияет на показания пробника. Изменяя Un, можно изменить диапазон измеряемых величин в ту или иную сторону. Изменение напряжения питания также влияет на чувствительность пробника к конденсаторам с потерями. Если его уменьшать, чувствительность падает, увеличивать - растёт. Светодиоды в пробнике - любые, красного свечения. Их все можно не устанавливать, а установить, например, через один. Правда, шаг шкалы при этом увеличится.

Настройка. Пробник размещён на плате размером 105x30 мм. Шкала пробника рассчитана по формулам 1 и 2 и соответствует действительности только при использовании микросхемы 74НС00 и напряжения питания 4,3 В. Микросхему DD2 желательно установить в панельку, т.к. если случайно коснуться пробником неразряженного конденсатора, находящегося под большим напряжением, микросхема может сгореть. Поэтому нужно обязательно разряжать конденсаторы перед измерением. Щупы пробника должны иметь минимальную длину, т.к. на его работоспособность влияет даже очень маленькая индуктивность щупов. В авторском варианте длина одного щупа (вместе с кабелем) - 22 см, а другого - 10 см.

 

С.Володько, г.Гомель.